AES source code

Advanced Encryption Standard

The source code for the AES algorithm, also called Advanced Encryption Standard or the Rijndael algorithm. This source code is part of the PolarSSL library and represents the most current version in the trunk of the library.
Download PolarSSL

The full algorithm of AES is further explained in AES algorithm (Wikipedia).

The code has a dependency on config.h in the aes.c source code file. You can remove this inclusion or just create a simple header file to define one or more of the configuration options that the AES source code has. In addition a dependency on padlock.h and padlock.c is present if you have POLARSSL_PADLOCK_C defined, and a dependency on aesni.h and aesni.c is present if you have POLARSSL_AESNI_C defined.

Full documentation on the AES source code can be found in the API documentation for the AES module.

You can also download it as part of the latest release of PolarSSL.

Header - aes.h

The aes.h header can also be found in the trunk on: aes.h.

/**
 * \file aes.h
 *
 * \brief AES block cipher
 *
 *  Copyright (C) 2006-2013, Brainspark B.V.
 *
 *  This file is part of PolarSSL (http://www.polarssl.org)
 *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
 *
 *  All rights reserved.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
#ifndef POLARSSL_AES_H
#define POLARSSL_AES_H

#include "config.h"

#include <string.h>

#if defined(_MSC_VER) && !defined(EFIX64) && !defined(EFI32)
#include <basetsd.h>
typedef UINT32 uint32_t;
#else
#include <inttypes.h>
#endif

/* padlock.c and aesni.c rely on these values! */
#define AES_ENCRYPT     1
#define AES_DECRYPT     0

#define POLARSSL_ERR_AES_INVALID_KEY_LENGTH                -0x0020  /**< Invalid key length. */
#define POLARSSL_ERR_AES_INVALID_INPUT_LENGTH              -0x0022  /**< Invalid data input length. */

#if !defined(POLARSSL_AES_ALT)
// Regular implementation
//

#ifdef __cplusplus
extern "C" {
#endif

/**
 * \brief          AES context structure
 *
 * \note           buf is able to hold 32 extra bytes, which can be used:
 *                 - for alignment purposes if VIA padlock is used, and/or
 *                 - to simplify key expansion in the 256-bit case by
 *                 generating an extra round key
 */
typedef struct
{
    int nr;                     /*!<  number of rounds  */
    uint32_t *rk;               /*!<  AES round keys    */
    uint32_t buf[68];           /*!<  unaligned data    */
}
aes_context;

/**
 * \brief          AES key schedule (encryption)
 *
 * \param ctx      AES context to be initialized
 * \param key      encryption key
 * \param keysize  must be 128, 192 or 256
 *
 * \return         0 if successful, or POLARSSL_ERR_AES_INVALID_KEY_LENGTH
 */
int aes_setkey_enc( aes_context *ctx, const unsigned char *key, unsigned int keysize );

/**
 * \brief          AES key schedule (decryption)
 *
 * \param ctx      AES context to be initialized
 * \param key      decryption key
 * \param keysize  must be 128, 192 or 256
 *
 * \return         0 if successful, or POLARSSL_ERR_AES_INVALID_KEY_LENGTH
 */
int aes_setkey_dec( aes_context *ctx, const unsigned char *key, unsigned int keysize );

/**
 * \brief          AES-ECB block encryption/decryption
 *
 * \param ctx      AES context
 * \param mode     AES_ENCRYPT or AES_DECRYPT
 * \param input    16-byte input block
 * \param output   16-byte output block
 *
 * \return         0 if successful
 */
int aes_crypt_ecb( aes_context *ctx,
                    int mode,
                    const unsigned char input[16],
                    unsigned char output[16] );

#if defined(POLARSSL_CIPHER_MODE_CBC)
/**
 * \brief          AES-CBC buffer encryption/decryption
 *                 Length should be a multiple of the block
 *                 size (16 bytes)
 *
 * \param ctx      AES context
 * \param mode     AES_ENCRYPT or AES_DECRYPT
 * \param length   length of the input data
 * \param iv       initialization vector (updated after use)
 * \param input    buffer holding the input data
 * \param output   buffer holding the output data
 *
 * \return         0 if successful, or POLARSSL_ERR_AES_INVALID_INPUT_LENGTH
 */
int aes_crypt_cbc( aes_context *ctx,
                    int mode,
                    size_t length,
                    unsigned char iv[16],
                    const unsigned char *input,
                    unsigned char *output );
#endif /* POLARSSL_CIPHER_MODE_CBC */

#if defined(POLARSSL_CIPHER_MODE_CFB)
/**
 * \brief          AES-CFB128 buffer encryption/decryption.
 *
 * Note: Due to the nature of CFB you should use the same key schedule for
 * both encryption and decryption. So a context initialized with
 * aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
 *
 * \param ctx      AES context
 * \param mode     AES_ENCRYPT or AES_DECRYPT
 * \param length   length of the input data
 * \param iv_off   offset in IV (updated after use)
 * \param iv       initialization vector (updated after use)
 * \param input    buffer holding the input data
 * \param output   buffer holding the output data
 *
 * \return         0 if successful
 */
int aes_crypt_cfb128( aes_context *ctx,
                       int mode,
                       size_t length,
                       size_t *iv_off,
                       unsigned char iv[16],
                       const unsigned char *input,
                       unsigned char *output );

/**
 * \brief          AES-CFB8 buffer encryption/decryption.
 *
 * Note: Due to the nature of CFB you should use the same key schedule for
 * both encryption and decryption. So a context initialized with
 * aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
 *
 * \param ctx      AES context
 * \param mode     AES_ENCRYPT or AES_DECRYPT
 * \param length   length of the input data
 * \param iv       initialization vector (updated after use)
 * \param input    buffer holding the input data
 * \param output   buffer holding the output data
 *
 * \return         0 if successful
 */
int aes_crypt_cfb8( aes_context *ctx,
                    int mode,
                    size_t length,
                    unsigned char iv[16],
                    const unsigned char *input,
                    unsigned char *output );
#endif /*POLARSSL_CIPHER_MODE_CFB */

#if defined(POLARSSL_CIPHER_MODE_CTR)
/**
 * \brief               AES-CTR buffer encryption/decryption
 *
 * Warning: You have to keep the maximum use of your counter in mind!
 *
 * Note: Due to the nature of CTR you should use the same key schedule for
 * both encryption and decryption. So a context initialized with
 * aes_setkey_enc() for both AES_ENCRYPT and AES_DECRYPT.
 *
 * \param ctx           AES context
 * \param length        The length of the data
 * \param nc_off        The offset in the current stream_block (for resuming
 *                      within current cipher stream). The offset pointer to
 *                      should be 0 at the start of a stream.
 * \param nonce_counter The 128-bit nonce and counter.
 * \param stream_block  The saved stream-block for resuming. Is overwritten
 *                      by the function.
 * \param input         The input data stream
 * \param output        The output data stream
 *
 * \return         0 if successful
 */
int aes_crypt_ctr( aes_context *ctx,
                       size_t length,
                       size_t *nc_off,
                       unsigned char nonce_counter[16],
                       unsigned char stream_block[16],
                       const unsigned char *input,
                       unsigned char *output );
#endif /* POLARSSL_CIPHER_MODE_CTR */

#ifdef __cplusplus
}
#endif

#else  /* POLARSSL_AES_ALT */
#include "aes_alt.h"
#endif /* POLARSSL_AES_ALT */

#ifdef __cplusplus
extern "C" {
#endif

/**
 * \brief          Checkup routine
 *
 * \return         0 if successful, or 1 if the test failed
 */
int aes_self_test( int verbose );

#ifdef __cplusplus
}
#endif

#endif /* aes.h */

Source - aes.c

The aes.c source code can also be found in the trunk on: aes.c.

/*
 *  FIPS-197 compliant AES implementation
 *
 *  Copyright (C) 2006-2014, Brainspark B.V.
 *
 *  This file is part of PolarSSL (http://www.polarssl.org)
 *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
 *
 *  All rights reserved.
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */
/*
 *  The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
 *
 *  http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
 *  http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
 */

#include "polarssl/config.h"

#if defined(POLARSSL_AES_C)

#include "polarssl/aes.h"
#if defined(POLARSSL_PADLOCK_C)
#include "polarssl/padlock.h"
#endif
#if defined(POLARSSL_AESNI_C)
#include "polarssl/aesni.h"
#endif

#if defined(POLARSSL_PLATFORM_C)
#include "polarssl/platform.h"
#else
#define polarssl_printf printf
#endif

#if !defined(POLARSSL_AES_ALT)

/*
 * 32-bit integer manipulation macros (little endian)
 */
#ifndef GET_UINT32_LE
#define GET_UINT32_LE(n,b,i)                            \
{                                                       \
    (n) = ( (uint32_t) (b)[(i)    ]       )             \
        | ( (uint32_t) (b)[(i) + 1] <<  8 )             \
        | ( (uint32_t) (b)[(i) + 2] << 16 )             \
        | ( (uint32_t) (b)[(i) + 3] << 24 );            \
}
#endif

#ifndef PUT_UINT32_LE
#define PUT_UINT32_LE(n,b,i)                            \
{                                                       \
    (b)[(i)    ] = (unsigned char) ( (n)       );       \
    (b)[(i) + 1] = (unsigned char) ( (n) >>  8 );       \
    (b)[(i) + 2] = (unsigned char) ( (n) >> 16 );       \
    (b)[(i) + 3] = (unsigned char) ( (n) >> 24 );       \
}
#endif

#if defined(POLARSSL_PADLOCK_C) &&                      \
    ( defined(POLARSSL_HAVE_X86) || defined(PADLOCK_ALIGN16) )
static int aes_padlock_ace = -1;
#endif

#if defined(POLARSSL_AES_ROM_TABLES)
/*
 * Forward S-box
 */
static const unsigned char FSb[256] =
{
    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
    0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
    0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
    0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
    0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
    0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
    0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
    0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
    0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
    0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
    0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
    0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
    0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
    0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
    0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
    0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
    0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
};

/*
 * Forward tables
 */
#define FT \
\
    V(A5,63,63,C6), V(84,7C,7C,F8), V(99,77,77,EE), V(8D,7B,7B,F6), \
    V(0D,F2,F2,FF), V(BD,6B,6B,D6), V(B1,6F,6F,DE), V(54,C5,C5,91), \
    V(50,30,30,60), V(03,01,01,02), V(A9,67,67,CE), V(7D,2B,2B,56), \
    V(19,FE,FE,E7), V(62,D7,D7,B5), V(E6,AB,AB,4D), V(9A,76,76,EC), \
    V(45,CA,CA,8F), V(9D,82,82,1F), V(40,C9,C9,89), V(87,7D,7D,FA), \
    V(15,FA,FA,EF), V(EB,59,59,B2), V(C9,47,47,8E), V(0B,F0,F0,FB), \
    V(EC,AD,AD,41), V(67,D4,D4,B3), V(FD,A2,A2,5F), V(EA,AF,AF,45), \
    V(BF,9C,9C,23), V(F7,A4,A4,53), V(96,72,72,E4), V(5B,C0,C0,9B), \
    V(C2,B7,B7,75), V(1C,FD,FD,E1), V(AE,93,93,3D), V(6A,26,26,4C), \
    V(5A,36,36,6C), V(41,3F,3F,7E), V(02,F7,F7,F5), V(4F,CC,CC,83), \
    V(5C,34,34,68), V(F4,A5,A5,51), V(34,E5,E5,D1), V(08,F1,F1,F9), \
    V(93,71,71,E2), V(73,D8,D8,AB), V(53,31,31,62), V(3F,15,15,2A), \
    V(0C,04,04,08), V(52,C7,C7,95), V(65,23,23,46), V(5E,C3,C3,9D), \
    V(28,18,18,30), V(A1,96,96,37), V(0F,05,05,0A), V(B5,9A,9A,2F), \
    V(09,07,07,0E), V(36,12,12,24), V(9B,80,80,1B), V(3D,E2,E2,DF), \
    V(26,EB,EB,CD), V(69,27,27,4E), V(CD,B2,B2,7F), V(9F,75,75,EA), \
    V(1B,09,09,12), V(9E,83,83,1D), V(74,2C,2C,58), V(2E,1A,1A,34), \
    V(2D,1B,1B,36), V(B2,6E,6E,DC), V(EE,5A,5A,B4), V(FB,A0,A0,5B), \
    V(F6,52,52,A4), V(4D,3B,3B,76), V(61,D6,D6,B7), V(CE,B3,B3,7D), \
    V(7B,29,29,52), V(3E,E3,E3,DD), V(71,2F,2F,5E), V(97,84,84,13), \
    V(F5,53,53,A6), V(68,D1,D1,B9), V(00,00,00,00), V(2C,ED,ED,C1), \
    V(60,20,20,40), V(1F,FC,FC,E3), V(C8,B1,B1,79), V(ED,5B,5B,B6), \
    V(BE,6A,6A,D4), V(46,CB,CB,8D), V(D9,BE,BE,67), V(4B,39,39,72), \
    V(DE,4A,4A,94), V(D4,4C,4C,98), V(E8,58,58,B0), V(4A,CF,CF,85), \
    V(6B,D0,D0,BB), V(2A,EF,EF,C5), V(E5,AA,AA,4F), V(16,FB,FB,ED), \
    V(C5,43,43,86), V(D7,4D,4D,9A), V(55,33,33,66), V(94,85,85,11), \
    V(CF,45,45,8A), V(10,F9,F9,E9), V(06,02,02,04), V(81,7F,7F,FE), \
    V(F0,50,50,A0), V(44,3C,3C,78), V(BA,9F,9F,25), V(E3,A8,A8,4B), \
    V(F3,51,51,A2), V(FE,A3,A3,5D), V(C0,40,40,80), V(8A,8F,8F,05), \
    V(AD,92,92,3F), V(BC,9D,9D,21), V(48,38,38,70), V(04,F5,F5,F1), \
    V(DF,BC,BC,63), V(C1,B6,B6,77), V(75,DA,DA,AF), V(63,21,21,42), \
    V(30,10,10,20), V(1A,FF,FF,E5), V(0E,F3,F3,FD), V(6D,D2,D2,BF), \
    V(4C,CD,CD,81), V(14,0C,0C,18), V(35,13,13,26), V(2F,EC,EC,C3), \
    V(E1,5F,5F,BE), V(A2,97,97,35), V(CC,44,44,88), V(39,17,17,2E), \
    V(57,C4,C4,93), V(F2,A7,A7,55), V(82,7E,7E,FC), V(47,3D,3D,7A), \
    V(AC,64,64,C8), V(E7,5D,5D,BA), V(2B,19,19,32), V(95,73,73,E6), \
    V(A0,60,60,C0), V(98,81,81,19), V(D1,4F,4F,9E), V(7F,DC,DC,A3), \
    V(66,22,22,44), V(7E,2A,2A,54), V(AB,90,90,3B), V(83,88,88,0B), \
    V(CA,46,46,8C), V(29,EE,EE,C7), V(D3,B8,B8,6B), V(3C,14,14,28), \
    V(79,DE,DE,A7), V(E2,5E,5E,BC), V(1D,0B,0B,16), V(76,DB,DB,AD), \
    V(3B,E0,E0,DB), V(56,32,32,64), V(4E,3A,3A,74), V(1E,0A,0A,14), \
    V(DB,49,49,92), V(0A,06,06,0C), V(6C,24,24,48), V(E4,5C,5C,B8), \
    V(5D,C2,C2,9F), V(6E,D3,D3,BD), V(EF,AC,AC,43), V(A6,62,62,C4), \
    V(A8,91,91,39), V(A4,95,95,31), V(37,E4,E4,D3), V(8B,79,79,F2), \
    V(32,E7,E7,D5), V(43,C8,C8,8B), V(59,37,37,6E), V(B7,6D,6D,DA), \
    V(8C,8D,8D,01), V(64,D5,D5,B1), V(D2,4E,4E,9C), V(E0,A9,A9,49), \
    V(B4,6C,6C,D8), V(FA,56,56,AC), V(07,F4,F4,F3), V(25,EA,EA,CF), \
    V(AF,65,65,CA), V(8E,7A,7A,F4), V(E9,AE,AE,47), V(18,08,08,10), \
    V(D5,BA,BA,6F), V(88,78,78,F0), V(6F,25,25,4A), V(72,2E,2E,5C), \
    V(24,1C,1C,38), V(F1,A6,A6,57), V(C7,B4,B4,73), V(51,C6,C6,97), \
    V(23,E8,E8,CB), V(7C,DD,DD,A1), V(9C,74,74,E8), V(21,1F,1F,3E), \
    V(DD,4B,4B,96), V(DC,BD,BD,61), V(86,8B,8B,0D), V(85,8A,8A,0F), \
    V(90,70,70,E0), V(42,3E,3E,7C), V(C4,B5,B5,71), V(AA,66,66,CC), \
    V(D8,48,48,90), V(05,03,03,06), V(01,F6,F6,F7), V(12,0E,0E,1C), \
    V(A3,61,61,C2), V(5F,35,35,6A), V(F9,57,57,AE), V(D0,B9,B9,69), \
    V(91,86,86,17), V(58,C1,C1,99), V(27,1D,1D,3A), V(B9,9E,9E,27), \
    V(38,E1,E1,D9), V(13,F8,F8,EB), V(B3,98,98,2B), V(33,11,11,22), \
    V(BB,69,69,D2), V(70,D9,D9,A9), V(89,8E,8E,07), V(A7,94,94,33), \
    V(B6,9B,9B,2D), V(22,1E,1E,3C), V(92,87,87,15), V(20,E9,E9,C9), \
    V(49,CE,CE,87), V(FF,55,55,AA), V(78,28,28,50), V(7A,DF,DF,A5), \
    V(8F,8C,8C,03), V(F8,A1,A1,59), V(80,89,89,09), V(17,0D,0D,1A), \
    V(DA,BF,BF,65), V(31,E6,E6,D7), V(C6,42,42,84), V(B8,68,68,D0), \
    V(C3,41,41,82), V(B0,99,99,29), V(77,2D,2D,5A), V(11,0F,0F,1E), \
    V(CB,B0,B0,7B), V(FC,54,54,A8), V(D6,BB,BB,6D), V(3A,16,16,2C)

#define V(a,b,c,d) 0x##a##b##c##d
static const uint32_t FT0[256] = { FT };
#undef V

#define V(a,b,c,d) 0x##b##c##d##a
static const uint32_t FT1[256] = { FT };
#undef V

#define V(a,b,c,d) 0x##c##d##a##b
static const uint32_t FT2[256] = { FT };
#undef V

#define V(a,b,c,d) 0x##d##a##b##c
static const uint32_t FT3[256] = { FT };
#undef V

#undef FT

/*
 * Reverse S-box
 */
static const unsigned char RSb[256] =
{
    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
    0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
    0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
    0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
    0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
    0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
    0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
    0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
    0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
    0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
    0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
    0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
    0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
    0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
    0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
    0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
    0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
};

/*
 * Reverse tables
 */
#define RT \
\
    V(50,A7,F4,51), V(53,65,41,7E), V(C3,A4,17,1A), V(96,5E,27,3A), \
    V(CB,6B,AB,3B), V(F1,45,9D,1F), V(AB,58,FA,AC), V(93,03,E3,4B), \
    V(55,FA,30,20), V(F6,6D,76,AD), V(91,76,CC,88), V(25,4C,02,F5), \
    V(FC,D7,E5,4F), V(D7,CB,2A,C5), V(80,44,35,26), V(8F,A3,62,B5), \
    V(49,5A,B1,DE), V(67,1B,BA,25), V(98,0E,EA,45), V(E1,C0,FE,5D), \
    V(02,75,2F,C3), V(12,F0,4C,81), V(A3,97,46,8D), V(C6,F9,D3,6B), \
    V(E7,5F,8F,03), V(95,9C,92,15), V(EB,7A,6D,BF), V(DA,59,52,95), \
    V(2D,83,BE,D4), V(D3,21,74,58), V(29,69,E0,49), V(44,C8,C9,8E), \
    V(6A,89,C2,75), V(78,79,8E,F4), V(6B,3E,58,99), V(DD,71,B9,27), \
    V(B6,4F,E1,BE), V(17,AD,88,F0), V(66,AC,20,C9), V(B4,3A,CE,7D), \
    V(18,4A,DF,63), V(82,31,1A,E5), V(60,33,51,97), V(45,7F,53,62), \
    V(E0,77,64,B1), V(84,AE,6B,BB), V(1C,A0,81,FE), V(94,2B,08,F9), \
    V(58,68,48,70), V(19,FD,45,8F), V(87,6C,DE,94), V(B7,F8,7B,52), \
    V(23,D3,73,AB), V(E2,02,4B,72), V(57,8F,1F,E3), V(2A,AB,55,66), \
    V(07,28,EB,B2), V(03,C2,B5,2F), V(9A,7B,C5,86), V(A5,08,37,D3), \
    V(F2,87,28,30), V(B2,A5,BF,23), V(BA,6A,03,02), V(5C,82,16,ED), \
    V(2B,1C,CF,8A), V(92,B4,79,A7), V(F0,F2,07,F3), V(A1,E2,69,4E), \
    V(CD,F4,DA,65), V(D5,BE,05,06), V(1F,62,34,D1), V(8A,FE,A6,C4), \
    V(9D,53,2E,34), V(A0,55,F3,A2), V(32,E1,8A,05), V(75,EB,F6,A4), \
    V(39,EC,83,0B), V(AA,EF,60,40), V(06,9F,71,5E), V(51,10,6E,BD), \
    V(F9,8A,21,3E), V(3D,06,DD,96), V(AE,05,3E,DD), V(46,BD,E6,4D), \
    V(B5,8D,54,91), V(05,5D,C4,71), V(6F,D4,06,04), V(FF,15,50,60), \
    V(24,FB,98,19), V(97,E9,BD,D6), V(CC,43,40,89), V(77,9E,D9,67), \
    V(BD,42,E8,B0), V(88,8B,89,07), V(38,5B,19,E7), V(DB,EE,C8,79), \
    V(47,0A,7C,A1), V(E9,0F,42,7C), V(C9,1E,84,F8), V(00,00,00,00), \
    V(83,86,80,09), V(48,ED,2B,32), V(AC,70,11,1E), V(4E,72,5A,6C), \
    V(FB,FF,0E,FD), V(56,38,85,0F), V(1E,D5,AE,3D), V(27,39,2D,36), \
    V(64,D9,0F,0A), V(21,A6,5C,68), V(D1,54,5B,9B), V(3A,2E,36,24), \
    V(B1,67,0A,0C), V(0F,E7,57,93), V(D2,96,EE,B4), V(9E,91,9B,1B), \
    V(4F,C5,C0,80), V(A2,20,DC,61), V(69,4B,77,5A), V(16,1A,12,1C), \
    V(0A,BA,93,E2), V(E5,2A,A0,C0), V(43,E0,22,3C), V(1D,17,1B,12), \
    V(0B,0D,09,0E), V(AD,C7,8B,F2), V(B9,A8,B6,2D), V(C8,A9,1E,14), \
    V(85,19,F1,57), V(4C,07,75,AF), V(BB,DD,99,EE), V(FD,60,7F,A3), \
    V(9F,26,01,F7), V(BC,F5,72,5C), V(C5,3B,66,44), V(34,7E,FB,5B), \
    V(76,29,43,8B), V(DC,C6,23,CB), V(68,FC,ED,B6), V(63,F1,E4,B8), \
    V(CA,DC,31,D7), V(10,85,63,42), V(40,22,97,13), V(20,11,C6,84), \
    V(7D,24,4A,85), V(F8,3D,BB,D2), V(11,32,F9,AE), V(6D,A1,29,C7), \
    V(4B,2F,9E,1D), V(F3,30,B2,DC), V(EC,52,86,0D), V(D0,E3,C1,77), \
    V(6C,16,B3,2B), V(99,B9,70,A9), V(FA,48,94,11), V(22,64,E9,47), \
    V(C4,8C,FC,A8), V(1A,3F,F0,A0), V(D8,2C,7D,56), V(EF,90,33,22), \
    V(C7,4E,49,87), V(C1,D1,38,D9), V(FE,A2,CA,8C), V(36,0B,D4,98), \
    V(CF,81,F5,A6), V(28,DE,7A,A5), V(26,8E,B7,DA), V(A4,BF,AD,3F), \
    V(E4,9D,3A,2C), V(0D,92,78,50), V(9B,CC,5F,6A), V(62,46,7E,54), \
    V(C2,13,8D,F6), V(E8,B8,D8,90), V(5E,F7,39,2E), V(F5,AF,C3,82), \
    V(BE,80,5D,9F), V(7C,93,D0,69), V(A9,2D,D5,6F), V(B3,12,25,CF), \
    V(3B,99,AC,C8), V(A7,7D,18,10), V(6E,63,9C,E8), V(7B,BB,3B,DB), \
    V(09,78,26,CD), V(F4,18,59,6E), V(01,B7,9A,EC), V(A8,9A,4F,83), \
    V(65,6E,95,E6), V(7E,E6,FF,AA), V(08,CF,BC,21), V(E6,E8,15,EF), \
    V(D9,9B,E7,BA), V(CE,36,6F,4A), V(D4,09,9F,EA), V(D6,7C,B0,29), \
    V(AF,B2,A4,31), V(31,23,3F,2A), V(30,94,A5,C6), V(C0,66,A2,35), \
    V(37,BC,4E,74), V(A6,CA,82,FC), V(B0,D0,90,E0), V(15,D8,A7,33), \
    V(4A,98,04,F1), V(F7,DA,EC,41), V(0E,50,CD,7F), V(2F,F6,91,17), \
    V(8D,D6,4D,76), V(4D,B0,EF,43), V(54,4D,AA,CC), V(DF,04,96,E4), \
    V(E3,B5,D1,9E), V(1B,88,6A,4C), V(B8,1F,2C,C1), V(7F,51,65,46), \
    V(04,EA,5E,9D), V(5D,35,8C,01), V(73,74,87,FA), V(2E,41,0B,FB), \
    V(5A,1D,67,B3), V(52,D2,DB,92), V(33,56,10,E9), V(13,47,D6,6D), \
    V(8C,61,D7,9A), V(7A,0C,A1,37), V(8E,14,F8,59), V(89,3C,13,EB), \
    V(EE,27,A9,CE), V(35,C9,61,B7), V(ED,E5,1C,E1), V(3C,B1,47,7A), \
    V(59,DF,D2,9C), V(3F,73,F2,55), V(79,CE,14,18), V(BF,37,C7,73), \
    V(EA,CD,F7,53), V(5B,AA,FD,5F), V(14,6F,3D,DF), V(86,DB,44,78), \
    V(81,F3,AF,CA), V(3E,C4,68,B9), V(2C,34,24,38), V(5F,40,A3,C2), \
    V(72,C3,1D,16), V(0C,25,E2,BC), V(8B,49,3C,28), V(41,95,0D,FF), \
    V(71,01,A8,39), V(DE,B3,0C,08), V(9C,E4,B4,D8), V(90,C1,56,64), \
    V(61,84,CB,7B), V(70,B6,32,D5), V(74,5C,6C,48), V(42,57,B8,D0)

#define V(a,b,c,d) 0x##a##b##c##d
static const uint32_t RT0[256] = { RT };
#undef V

#define V(a,b,c,d) 0x##b##c##d##a
static const uint32_t RT1[256] = { RT };
#undef V

#define V(a,b,c,d) 0x##c##d##a##b
static const uint32_t RT2[256] = { RT };
#undef V

#define V(a,b,c,d) 0x##d##a##b##c
static const uint32_t RT3[256] = { RT };
#undef V

#undef RT

/*
 * Round constants
 */
static const uint32_t RCON[10] =
{
    0x00000001, 0x00000002, 0x00000004, 0x00000008,
    0x00000010, 0x00000020, 0x00000040, 0x00000080,
    0x0000001B, 0x00000036
};

#else

/*
 * Forward S-box & tables
 */
static unsigned char FSb[256];
static uint32_t FT0[256]; 
static uint32_t FT1[256]; 
static uint32_t FT2[256]; 
static uint32_t FT3[256]; 

/*
 * Reverse S-box & tables
 */
static unsigned char RSb[256];
static uint32_t RT0[256];
static uint32_t RT1[256];
static uint32_t RT2[256];
static uint32_t RT3[256];

/*
 * Round constants
 */
static uint32_t RCON[10];

/*
 * Tables generation code
 */
#define ROTL8(x) ( ( x << 8 ) & 0xFFFFFFFF ) | ( x >> 24 )
#define XTIME(x) ( ( x << 1 ) ^ ( ( x & 0x80 ) ? 0x1B : 0x00 ) )
#define MUL(x,y) ( ( x && y ) ? pow[(log[x]+log[y]) % 255] : 0 )

static int aes_init_done = 0;

static void aes_gen_tables( void )
{
    int i, x, y, z;
    int pow[256];
    int log[256];

    /*
     * compute pow and log tables over GF(2^8)
     */
    for( i = 0, x = 1; i < 256; i++ )
    {
        pow[i] = x;
        log[x] = i;
        x = ( x ^ XTIME( x ) ) & 0xFF;
    }

    /*
     * calculate the round constants
     */
    for( i = 0, x = 1; i < 10; i++ )
    {
        RCON[i] = (uint32_t) x;
        x = XTIME( x ) & 0xFF;
    }

    /*
     * generate the forward and reverse S-boxes
     */
    FSb[0x00] = 0x63;
    RSb[0x63] = 0x00;

    for( i = 1; i < 256; i++ )
    {
        x = pow[255 - log[i]];

        y  = x; y = ( (y << 1) | (y >> 7) ) & 0xFF;
        x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF;
        x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF;
        x ^= y; y = ( (y << 1) | (y >> 7) ) & 0xFF;
        x ^= y ^ 0x63;

        FSb[i] = (unsigned char) x;
        RSb[x] = (unsigned char) i;
    }

    /*
     * generate the forward and reverse tables
     */
    for( i = 0; i < 256; i++ )
    {
        x = FSb[i];
        y = XTIME( x ) & 0xFF;
        z =  ( y ^ x ) & 0xFF;

        FT0[i] = ( (uint32_t) y       ) ^
                 ( (uint32_t) x <<  8 ) ^
                 ( (uint32_t) x << 16 ) ^
                 ( (uint32_t) z << 24 );

        FT1[i] = ROTL8( FT0[i] );
        FT2[i] = ROTL8( FT1[i] );
        FT3[i] = ROTL8( FT2[i] );

        x = RSb[i];

        RT0[i] = ( (uint32_t) MUL( 0x0E, x )       ) ^
                 ( (uint32_t) MUL( 0x09, x ) <<  8 ) ^
                 ( (uint32_t) MUL( 0x0D, x ) << 16 ) ^
                 ( (uint32_t) MUL( 0x0B, x ) << 24 );

        RT1[i] = ROTL8( RT0[i] );
        RT2[i] = ROTL8( RT1[i] );
        RT3[i] = ROTL8( RT2[i] );
    }
}

#endif

/*
 * AES key schedule (encryption)
 */
int aes_setkey_enc( aes_context *ctx, const unsigned char *key, unsigned int keysize )
{
    unsigned int i;
    uint32_t *RK;

#if !defined(POLARSSL_AES_ROM_TABLES)
    if( aes_init_done == 0 )
    {
        aes_gen_tables();
        aes_init_done = 1;

    }
#endif

    switch( keysize )
    {
        case 128: ctx->nr = 10; break;
        case 192: ctx->nr = 12; break;
        case 256: ctx->nr = 14; break;
        default : return( POLARSSL_ERR_AES_INVALID_KEY_LENGTH );
    }

#if defined(POLARSSL_PADLOCK_C) && defined(PADLOCK_ALIGN16)
    if( aes_padlock_ace == -1 )
        aes_padlock_ace = padlock_supports( PADLOCK_ACE );

    if( aes_padlock_ace )
        ctx->rk = RK = PADLOCK_ALIGN16( ctx->buf );
    else
#endif
    ctx->rk = RK = ctx->buf;

#if defined(POLARSSL_AESNI_C) && defined(POLARSSL_HAVE_X86_64)
    if( aesni_supports( POLARSSL_AESNI_AES ) )
        return( aesni_setkey_enc( (unsigned char *) ctx->rk, key, keysize ) );
#endif

    for( i = 0; i < (keysize >> 5); i++ )
    {
        GET_UINT32_LE( RK[i], key, i << 2 );
    }

    switch( ctx->nr )
    {
        case 10:

            for( i = 0; i < 10; i++, RK += 4 )
            {
                RK[4]  = RK[0] ^ RCON[i] ^
                ( (uint32_t) FSb[ ( RK[3] >>  8 ) & 0xFF ]       ) ^
                ( (uint32_t) FSb[ ( RK[3] >> 16 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) FSb[ ( RK[3] >> 24 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) FSb[ ( RK[3]       ) & 0xFF ] << 24 );

                RK[5]  = RK[1] ^ RK[4];
                RK[6]  = RK[2] ^ RK[5];
                RK[7]  = RK[3] ^ RK[6];
            }
            break;

        case 12:

            for( i = 0; i < 8; i++, RK += 6 )
            {
                RK[6]  = RK[0] ^ RCON[i] ^
                ( (uint32_t) FSb[ ( RK[5] >>  8 ) & 0xFF ]       ) ^
                ( (uint32_t) FSb[ ( RK[5] >> 16 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) FSb[ ( RK[5] >> 24 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) FSb[ ( RK[5]       ) & 0xFF ] << 24 );

                RK[7]  = RK[1] ^ RK[6];
                RK[8]  = RK[2] ^ RK[7];
                RK[9]  = RK[3] ^ RK[8];
                RK[10] = RK[4] ^ RK[9];
                RK[11] = RK[5] ^ RK[10];
            }
            break;

        case 14:

            for( i = 0; i < 7; i++, RK += 8 )
            {
                RK[8]  = RK[0] ^ RCON[i] ^
                ( (uint32_t) FSb[ ( RK[7] >>  8 ) & 0xFF ]       ) ^
                ( (uint32_t) FSb[ ( RK[7] >> 16 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) FSb[ ( RK[7] >> 24 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) FSb[ ( RK[7]       ) & 0xFF ] << 24 );

                RK[9]  = RK[1] ^ RK[8];
                RK[10] = RK[2] ^ RK[9];
                RK[11] = RK[3] ^ RK[10];

                RK[12] = RK[4] ^
                ( (uint32_t) FSb[ ( RK[11]       ) & 0xFF ]       ) ^
                ( (uint32_t) FSb[ ( RK[11] >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) FSb[ ( RK[11] >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) FSb[ ( RK[11] >> 24 ) & 0xFF ] << 24 );

                RK[13] = RK[5] ^ RK[12];
                RK[14] = RK[6] ^ RK[13];
                RK[15] = RK[7] ^ RK[14];
            }
            break;

        default:

            break;
    }

    return( 0 );
}

/*
 * AES key schedule (decryption)
 */
int aes_setkey_dec( aes_context *ctx, const unsigned char *key, unsigned int keysize )
{
    int i, j;
    aes_context cty;
    uint32_t *RK;
    uint32_t *SK;
    int ret;

    switch( keysize )
    {
        case 128: ctx->nr = 10; break;
        case 192: ctx->nr = 12; break;
        case 256: ctx->nr = 14; break;
        default : return( POLARSSL_ERR_AES_INVALID_KEY_LENGTH );
    }

#if defined(POLARSSL_PADLOCK_C) && defined(PADLOCK_ALIGN16)
    if( aes_padlock_ace == -1 )
        aes_padlock_ace = padlock_supports( PADLOCK_ACE );

    if( aes_padlock_ace )
        ctx->rk = RK = PADLOCK_ALIGN16( ctx->buf );
    else
#endif
    ctx->rk = RK = ctx->buf;

    ret = aes_setkey_enc( &cty, key, keysize );
    if( ret != 0 )
        return( ret );

#if defined(POLARSSL_AESNI_C) && defined(POLARSSL_HAVE_X86_64)
    if( aesni_supports( POLARSSL_AESNI_AES ) )
    {
        aesni_inverse_key( (unsigned char *) ctx->rk,
                           (const unsigned char *) cty.rk, ctx->nr );
        goto done;
    }
#endif

    SK = cty.rk + cty.nr * 4;

    *RK++ = *SK++;
    *RK++ = *SK++;
    *RK++ = *SK++;
    *RK++ = *SK++;

    for( i = ctx->nr - 1, SK -= 8; i > 0; i--, SK -= 8 )
    {
        for( j = 0; j < 4; j++, SK++ )
        {
            *RK++ = RT0[ FSb[ ( *SK       ) & 0xFF ] ] ^
                    RT1[ FSb[ ( *SK >>  8 ) & 0xFF ] ] ^
                    RT2[ FSb[ ( *SK >> 16 ) & 0xFF ] ] ^
                    RT3[ FSb[ ( *SK >> 24 ) & 0xFF ] ];
        }
    }

    *RK++ = *SK++;
    *RK++ = *SK++;
    *RK++ = *SK++;
    *RK++ = *SK++;

#if defined(POLARSSL_AESNI_C) && defined(POLARSSL_HAVE_X86_64)
done:
#endif
    memset( &cty, 0, sizeof( aes_context ) );

    return( 0 );
}

#define AES_FROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)     \
{                                               \
    X0 = *RK++ ^ FT0[ ( Y0       ) & 0xFF ] ^   \
                 FT1[ ( Y1 >>  8 ) & 0xFF ] ^   \
                 FT2[ ( Y2 >> 16 ) & 0xFF ] ^   \
                 FT3[ ( Y3 >> 24 ) & 0xFF ];    \
                                                \
    X1 = *RK++ ^ FT0[ ( Y1       ) & 0xFF ] ^   \
                 FT1[ ( Y2 >>  8 ) & 0xFF ] ^   \
                 FT2[ ( Y3 >> 16 ) & 0xFF ] ^   \
                 FT3[ ( Y0 >> 24 ) & 0xFF ];    \
                                                \
    X2 = *RK++ ^ FT0[ ( Y2       ) & 0xFF ] ^   \
                 FT1[ ( Y3 >>  8 ) & 0xFF ] ^   \
                 FT2[ ( Y0 >> 16 ) & 0xFF ] ^   \
                 FT3[ ( Y1 >> 24 ) & 0xFF ];    \
                                                \
    X3 = *RK++ ^ FT0[ ( Y3       ) & 0xFF ] ^   \
                 FT1[ ( Y0 >>  8 ) & 0xFF ] ^   \
                 FT2[ ( Y1 >> 16 ) & 0xFF ] ^   \
                 FT3[ ( Y2 >> 24 ) & 0xFF ];    \
}

#define AES_RROUND(X0,X1,X2,X3,Y0,Y1,Y2,Y3)     \
{                                               \
    X0 = *RK++ ^ RT0[ ( Y0       ) & 0xFF ] ^   \
                 RT1[ ( Y3 >>  8 ) & 0xFF ] ^   \
                 RT2[ ( Y2 >> 16 ) & 0xFF ] ^   \
                 RT3[ ( Y1 >> 24 ) & 0xFF ];    \
                                                \
    X1 = *RK++ ^ RT0[ ( Y1       ) & 0xFF ] ^   \
                 RT1[ ( Y0 >>  8 ) & 0xFF ] ^   \
                 RT2[ ( Y3 >> 16 ) & 0xFF ] ^   \
                 RT3[ ( Y2 >> 24 ) & 0xFF ];    \
                                                \
    X2 = *RK++ ^ RT0[ ( Y2       ) & 0xFF ] ^   \
                 RT1[ ( Y1 >>  8 ) & 0xFF ] ^   \
                 RT2[ ( Y0 >> 16 ) & 0xFF ] ^   \
                 RT3[ ( Y3 >> 24 ) & 0xFF ];    \
                                                \
    X3 = *RK++ ^ RT0[ ( Y3       ) & 0xFF ] ^   \
                 RT1[ ( Y2 >>  8 ) & 0xFF ] ^   \
                 RT2[ ( Y1 >> 16 ) & 0xFF ] ^   \
                 RT3[ ( Y0 >> 24 ) & 0xFF ];    \
}

/*
 * AES-ECB block encryption/decryption
 */
int aes_crypt_ecb( aes_context *ctx,
                    int mode,
                    const unsigned char input[16],
                    unsigned char output[16] )
{
    int i;
    uint32_t *RK, X0, X1, X2, X3, Y0, Y1, Y2, Y3;

#if defined(POLARSSL_AESNI_C) && defined(POLARSSL_HAVE_X86_64)
    if( aesni_supports( POLARSSL_AESNI_AES ) )
        return( aesni_crypt_ecb( ctx, mode, input, output ) );
#endif

#if defined(POLARSSL_PADLOCK_C) && defined(POLARSSL_HAVE_X86)
    if( aes_padlock_ace )
    {
        if( padlock_xcryptecb( ctx, mode, input, output ) == 0 )
            return( 0 );

        // If padlock data misaligned, we just fall back to
        // unaccelerated mode
        //
    }
#endif

    RK = ctx->rk;

    GET_UINT32_LE( X0, input,  0 ); X0 ^= *RK++;
    GET_UINT32_LE( X1, input,  4 ); X1 ^= *RK++;
    GET_UINT32_LE( X2, input,  8 ); X2 ^= *RK++;
    GET_UINT32_LE( X3, input, 12 ); X3 ^= *RK++;

    if( mode == AES_DECRYPT )
    {
        for( i = (ctx->nr >> 1) - 1; i > 0; i-- )
        {
            AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
            AES_RROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );
        }

        AES_RROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );

        X0 = *RK++ ^ \
                ( (uint32_t) RSb[ ( Y0       ) & 0xFF ]       ) ^
                ( (uint32_t) RSb[ ( Y3 >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) RSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) RSb[ ( Y1 >> 24 ) & 0xFF ] << 24 );

        X1 = *RK++ ^ \
                ( (uint32_t) RSb[ ( Y1       ) & 0xFF ]       ) ^
                ( (uint32_t) RSb[ ( Y0 >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) RSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) RSb[ ( Y2 >> 24 ) & 0xFF ] << 24 );

        X2 = *RK++ ^ \
                ( (uint32_t) RSb[ ( Y2       ) & 0xFF ]       ) ^
                ( (uint32_t) RSb[ ( Y1 >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) RSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) RSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );

        X3 = *RK++ ^ \
                ( (uint32_t) RSb[ ( Y3       ) & 0xFF ]       ) ^
                ( (uint32_t) RSb[ ( Y2 >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) RSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) RSb[ ( Y0 >> 24 ) & 0xFF ] << 24 );
    }
    else /* AES_ENCRYPT */
    {
        for( i = (ctx->nr >> 1) - 1; i > 0; i-- )
        {
            AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );
            AES_FROUND( X0, X1, X2, X3, Y0, Y1, Y2, Y3 );
        }

        AES_FROUND( Y0, Y1, Y2, Y3, X0, X1, X2, X3 );

        X0 = *RK++ ^ \
                ( (uint32_t) FSb[ ( Y0       ) & 0xFF ]       ) ^
                ( (uint32_t) FSb[ ( Y1 >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) FSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) FSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );

        X1 = *RK++ ^ \
                ( (uint32_t) FSb[ ( Y1       ) & 0xFF ]       ) ^
                ( (uint32_t) FSb[ ( Y2 >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) FSb[ ( Y3 >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) FSb[ ( Y0 >> 24 ) & 0xFF ] << 24 );

        X2 = *RK++ ^ \
                ( (uint32_t) FSb[ ( Y2       ) & 0xFF ]       ) ^
                ( (uint32_t) FSb[ ( Y3 >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) FSb[ ( Y0 >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) FSb[ ( Y1 >> 24 ) & 0xFF ] << 24 );

        X3 = *RK++ ^ \
                ( (uint32_t) FSb[ ( Y3       ) & 0xFF ]       ) ^
                ( (uint32_t) FSb[ ( Y0 >>  8 ) & 0xFF ] <<  8 ) ^
                ( (uint32_t) FSb[ ( Y1 >> 16 ) & 0xFF ] << 16 ) ^
                ( (uint32_t) FSb[ ( Y2 >> 24 ) & 0xFF ] << 24 );
    }

    PUT_UINT32_LE( X0, output,  0 );
    PUT_UINT32_LE( X1, output,  4 );
    PUT_UINT32_LE( X2, output,  8 );
    PUT_UINT32_LE( X3, output, 12 );

    return( 0 );
}

#if defined(POLARSSL_CIPHER_MODE_CBC)
/*
 * AES-CBC buffer encryption/decryption
 */
int aes_crypt_cbc( aes_context *ctx,
                    int mode,
                    size_t length,
                    unsigned char iv[16],
                    const unsigned char *input,
                    unsigned char *output )
{
    int i;
    unsigned char temp[16];

    if( length % 16 )
        return( POLARSSL_ERR_AES_INVALID_INPUT_LENGTH );

#if defined(POLARSSL_PADLOCK_C) && defined(POLARSSL_HAVE_X86)
    if( aes_padlock_ace )
    {
        if( padlock_xcryptcbc( ctx, mode, length, iv, input, output ) == 0 )
            return( 0 );
        
        // If padlock data misaligned, we just fall back to
        // unaccelerated mode
        //
    }
#endif

    if( mode == AES_DECRYPT )
    {
        while( length > 0 )
        {
            memcpy( temp, input, 16 );
            aes_crypt_ecb( ctx, mode, input, output );

            for( i = 0; i < 16; i++ )
                output[i] = (unsigned char)( output[i] ^ iv[i] );

            memcpy( iv, temp, 16 );

            input  += 16;
            output += 16;
            length -= 16;
        }
    }
    else
    {
        while( length > 0 )
        {
            for( i = 0; i < 16; i++ )
                output[i] = (unsigned char)( input[i] ^ iv[i] );

            aes_crypt_ecb( ctx, mode, output, output );
            memcpy( iv, output, 16 );

            input  += 16;
            output += 16;
            length -= 16;
        }
    }

    return( 0 );
}
#endif /* POLARSSL_CIPHER_MODE_CBC */

#if defined(POLARSSL_CIPHER_MODE_CFB)
/*
 * AES-CFB128 buffer encryption/decryption
 */
int aes_crypt_cfb128( aes_context *ctx,
                       int mode,
                       size_t length,
                       size_t *iv_off,
                       unsigned char iv[16],
                       const unsigned char *input,
                       unsigned char *output )
{
    int c;
    size_t n = *iv_off;

    if( mode == AES_DECRYPT )
    {
        while( length-- )
        {
            if( n == 0 )
                aes_crypt_ecb( ctx, AES_ENCRYPT, iv, iv );

            c = *input++;
            *output++ = (unsigned char)( c ^ iv[n] );
            iv[n] = (unsigned char) c;

            n = (n + 1) & 0x0F;
        }
    }
    else
    {
        while( length-- )
        {
            if( n == 0 )
                aes_crypt_ecb( ctx, AES_ENCRYPT, iv, iv );

            iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ );

            n = (n + 1) & 0x0F;
        }
    }

    *iv_off = n;

    return( 0 );
}

/*
 * AES-CFB8 buffer encryption/decryption
 */
#include <stdio.h>
int aes_crypt_cfb8( aes_context *ctx,
                       int mode,
                       size_t length,
                       unsigned char iv[16],
                       const unsigned char *input,
                       unsigned char *output )
{
    unsigned char c;
    unsigned char ov[17];

    while( length-- )
    {
        memcpy(ov, iv, 16);
        aes_crypt_ecb( ctx, AES_ENCRYPT, iv, iv );

        if( mode == AES_DECRYPT )
            ov[16] = *input;

        c = *output++ = (unsigned char)( iv[0] ^ *input++ );

        if( mode == AES_ENCRYPT )
            ov[16] = c;

        memcpy(iv, ov + 1, 16);
    }

    return( 0 );
}
#endif /*POLARSSL_CIPHER_MODE_CFB */

#if defined(POLARSSL_CIPHER_MODE_CTR)
/*
 * AES-CTR buffer encryption/decryption
 */
int aes_crypt_ctr( aes_context *ctx,
                       size_t length,
                       size_t *nc_off,
                       unsigned char nonce_counter[16],
                       unsigned char stream_block[16],
                       const unsigned char *input,
                       unsigned char *output )
{
    int c, i;
    size_t n = *nc_off;

    while( length-- )
    {
        if( n == 0 ) {
            aes_crypt_ecb( ctx, AES_ENCRYPT, nonce_counter, stream_block );

            for( i = 16; i > 0; i-- )
                if( ++nonce_counter[i - 1] != 0 )
                    break;
        }
        c = *input++;
        *output++ = (unsigned char)( c ^ stream_block[n] );

        n = (n + 1) & 0x0F;
    }

    *nc_off = n;

    return( 0 );
}
#endif /* POLARSSL_CIPHER_MODE_CTR */

#endif /* !POLARSSL_AES_ALT */

#if defined(POLARSSL_SELF_TEST)

#include <stdio.h>

/*
 * AES test vectors from:
 *
 * http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip
 */
static const unsigned char aes_test_ecb_dec[3][16] =
{
    { 0x44, 0x41, 0x6A, 0xC2, 0xD1, 0xF5, 0x3C, 0x58,
      0x33, 0x03, 0x91, 0x7E, 0x6B, 0xE9, 0xEB, 0xE0 },
    { 0x48, 0xE3, 0x1E, 0x9E, 0x25, 0x67, 0x18, 0xF2,
      0x92, 0x29, 0x31, 0x9C, 0x19, 0xF1, 0x5B, 0xA4 },
    { 0x05, 0x8C, 0xCF, 0xFD, 0xBB, 0xCB, 0x38, 0x2D,
      0x1F, 0x6F, 0x56, 0x58, 0x5D, 0x8A, 0x4A, 0xDE }
};

static const unsigned char aes_test_ecb_enc[3][16] =
{
    { 0xC3, 0x4C, 0x05, 0x2C, 0xC0, 0xDA, 0x8D, 0x73,
      0x45, 0x1A, 0xFE, 0x5F, 0x03, 0xBE, 0x29, 0x7F },
    { 0xF3, 0xF6, 0x75, 0x2A, 0xE8, 0xD7, 0x83, 0x11,
      0x38, 0xF0, 0x41, 0x56, 0x06, 0x31, 0xB1, 0x14 },
    { 0x8B, 0x79, 0xEE, 0xCC, 0x93, 0xA0, 0xEE, 0x5D,
      0xFF, 0x30, 0xB4, 0xEA, 0x21, 0x63, 0x6D, 0xA4 }
};

#if defined(POLARSSL_CIPHER_MODE_CBC)
static const unsigned char aes_test_cbc_dec[3][16] =
{
    { 0xFA, 0xCA, 0x37, 0xE0, 0xB0, 0xC8, 0x53, 0x73,
      0xDF, 0x70, 0x6E, 0x73, 0xF7, 0xC9, 0xAF, 0x86 },
    { 0x5D, 0xF6, 0x78, 0xDD, 0x17, 0xBA, 0x4E, 0x75,
      0xB6, 0x17, 0x68, 0xC6, 0xAD, 0xEF, 0x7C, 0x7B },
    { 0x48, 0x04, 0xE1, 0x81, 0x8F, 0xE6, 0x29, 0x75,
      0x19, 0xA3, 0xE8, 0x8C, 0x57, 0x31, 0x04, 0x13 }
};

static const unsigned char aes_test_cbc_enc[3][16] =
{
    { 0x8A, 0x05, 0xFC, 0x5E, 0x09, 0x5A, 0xF4, 0x84,
      0x8A, 0x08, 0xD3, 0x28, 0xD3, 0x68, 0x8E, 0x3D },
    { 0x7B, 0xD9, 0x66, 0xD5, 0x3A, 0xD8, 0xC1, 0xBB,
      0x85, 0xD2, 0xAD, 0xFA, 0xE8, 0x7B, 0xB1, 0x04 },
    { 0xFE, 0x3C, 0x53, 0x65, 0x3E, 0x2F, 0x45, 0xB5,
      0x6F, 0xCD, 0x88, 0xB2, 0xCC, 0x89, 0x8F, 0xF0 }
};
#endif /* POLARSSL_CIPHER_MODE_CBC */

#if defined(POLARSSL_CIPHER_MODE_CFB)
/*
 * AES-CFB128 test vectors from:
 *
 * http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
 */
static const unsigned char aes_test_cfb128_key[3][32] =
{
    { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
      0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C },
    { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52,
      0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5,
      0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B },
    { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE,
      0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81,
      0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7,
      0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 }
};

static const unsigned char aes_test_cfb128_iv[16] =
{
    0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
};

static const unsigned char aes_test_cfb128_pt[64] =
{
    0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
    0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A,
    0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C,
    0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51,
    0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11,
    0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF,
    0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17,
    0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10
};

static const unsigned char aes_test_cfb128_ct[3][64] =
{
    { 0x3B, 0x3F, 0xD9, 0x2E, 0xB7, 0x2D, 0xAD, 0x20,
      0x33, 0x34, 0x49, 0xF8, 0xE8, 0x3C, 0xFB, 0x4A,
      0xC8, 0xA6, 0x45, 0x37, 0xA0, 0xB3, 0xA9, 0x3F,
      0xCD, 0xE3, 0xCD, 0xAD, 0x9F, 0x1C, 0xE5, 0x8B,
      0x26, 0x75, 0x1F, 0x67, 0xA3, 0xCB, 0xB1, 0x40,
      0xB1, 0x80, 0x8C, 0xF1, 0x87, 0xA4, 0xF4, 0xDF,
      0xC0, 0x4B, 0x05, 0x35, 0x7C, 0x5D, 0x1C, 0x0E,
      0xEA, 0xC4, 0xC6, 0x6F, 0x9F, 0xF7, 0xF2, 0xE6 },
    { 0xCD, 0xC8, 0x0D, 0x6F, 0xDD, 0xF1, 0x8C, 0xAB,
      0x34, 0xC2, 0x59, 0x09, 0xC9, 0x9A, 0x41, 0x74,
      0x67, 0xCE, 0x7F, 0x7F, 0x81, 0x17, 0x36, 0x21,
      0x96, 0x1A, 0x2B, 0x70, 0x17, 0x1D, 0x3D, 0x7A,
      0x2E, 0x1E, 0x8A, 0x1D, 0xD5, 0x9B, 0x88, 0xB1,
      0xC8, 0xE6, 0x0F, 0xED, 0x1E, 0xFA, 0xC4, 0xC9,
      0xC0, 0x5F, 0x9F, 0x9C, 0xA9, 0x83, 0x4F, 0xA0,
      0x42, 0xAE, 0x8F, 0xBA, 0x58, 0x4B, 0x09, 0xFF },
    { 0xDC, 0x7E, 0x84, 0xBF, 0xDA, 0x79, 0x16, 0x4B,
      0x7E, 0xCD, 0x84, 0x86, 0x98, 0x5D, 0x38, 0x60,
      0x39, 0xFF, 0xED, 0x14, 0x3B, 0x28, 0xB1, 0xC8,
      0x32, 0x11, 0x3C, 0x63, 0x31, 0xE5, 0x40, 0x7B,
      0xDF, 0x10, 0x13, 0x24, 0x15, 0xE5, 0x4B, 0x92,
      0xA1, 0x3E, 0xD0, 0xA8, 0x26, 0x7A, 0xE2, 0xF9,
      0x75, 0xA3, 0x85, 0x74, 0x1A, 0xB9, 0xCE, 0xF8,
      0x20, 0x31, 0x62, 0x3D, 0x55, 0xB1, 0xE4, 0x71 }
};
#endif /* POLARSSL_CIPHER_MODE_CFB */

#if defined(POLARSSL_CIPHER_MODE_CTR)
/*
 * AES-CTR test vectors from:
 *
 * http://www.faqs.org/rfcs/rfc3686.html
 */

static const unsigned char aes_test_ctr_key[3][16] =
{
    { 0xAE, 0x68, 0x52, 0xF8, 0x12, 0x10, 0x67, 0xCC,
      0x4B, 0xF7, 0xA5, 0x76, 0x55, 0x77, 0xF3, 0x9E },
    { 0x7E, 0x24, 0x06, 0x78, 0x17, 0xFA, 0xE0, 0xD7,
      0x43, 0xD6, 0xCE, 0x1F, 0x32, 0x53, 0x91, 0x63 },
    { 0x76, 0x91, 0xBE, 0x03, 0x5E, 0x50, 0x20, 0xA8,
      0xAC, 0x6E, 0x61, 0x85, 0x29, 0xF9, 0xA0, 0xDC }
};

static const unsigned char aes_test_ctr_nonce_counter[3][16] =
{
    { 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
    { 0x00, 0x6C, 0xB6, 0xDB, 0xC0, 0x54, 0x3B, 0x59,
      0xDA, 0x48, 0xD9, 0x0B, 0x00, 0x00, 0x00, 0x01 },
    { 0x00, 0xE0, 0x01, 0x7B, 0x27, 0x77, 0x7F, 0x3F,
      0x4A, 0x17, 0x86, 0xF0, 0x00, 0x00, 0x00, 0x01 }
};

static const unsigned char aes_test_ctr_pt[3][48] =
{
    { 0x53, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x62,
      0x6C, 0x6F, 0x63, 0x6B, 0x20, 0x6D, 0x73, 0x67 },

    { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
      0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
      0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
      0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F },

    { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
      0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
      0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
      0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
      0x20, 0x21, 0x22, 0x23 }
};

static const unsigned char aes_test_ctr_ct[3][48] =
{
    { 0xE4, 0x09, 0x5D, 0x4F, 0xB7, 0xA7, 0xB3, 0x79,
      0x2D, 0x61, 0x75, 0xA3, 0x26, 0x13, 0x11, 0xB8 },
    { 0x51, 0x04, 0xA1, 0x06, 0x16, 0x8A, 0x72, 0xD9,
      0x79, 0x0D, 0x41, 0xEE, 0x8E, 0xDA, 0xD3, 0x88,
      0xEB, 0x2E, 0x1E, 0xFC, 0x46, 0xDA, 0x57, 0xC8,
      0xFC, 0xE6, 0x30, 0xDF, 0x91, 0x41, 0xBE, 0x28 },
    { 0xC1, 0xCF, 0x48, 0xA8, 0x9F, 0x2F, 0xFD, 0xD9,
      0xCF, 0x46, 0x52, 0xE9, 0xEF, 0xDB, 0x72, 0xD7,
      0x45, 0x40, 0xA4, 0x2B, 0xDE, 0x6D, 0x78, 0x36,
      0xD5, 0x9A, 0x5C, 0xEA, 0xAE, 0xF3, 0x10, 0x53,
      0x25, 0xB2, 0x07, 0x2F }
};

static const int aes_test_ctr_len[3] =
    { 16, 32, 36 };
#endif /* POLARSSL_CIPHER_MODE_CTR */

/*
 * Checkup routine
 */
int aes_self_test( int verbose )
{
    int i, j, u, v;
    unsigned char key[32];
    unsigned char buf[64];
    unsigned char iv[16];
#if defined(POLARSSL_CIPHER_MODE_CBC)
    unsigned char prv[16];
#endif
#if defined(POLARSSL_CIPHER_MODE_CTR) || defined(POLARSSL_CIPHER_MODE_CFB)
    size_t offset;
#endif
#if defined(POLARSSL_CIPHER_MODE_CTR)
    int len;
    unsigned char nonce_counter[16];
    unsigned char stream_block[16];
#endif
    aes_context ctx;

    memset( key, 0, 32 );

    /*
     * ECB mode
     */
    for( i = 0; i < 6; i++ )
    {
        u = i >> 1;
        v = i  & 1;

        if( verbose != 0 )
            polarssl_printf( "  AES-ECB-%3d (%s): ", 128 + u * 64,
                             ( v == AES_DECRYPT ) ? "dec" : "enc" );

        memset( buf, 0, 16 );

        if( v == AES_DECRYPT )
        {
            aes_setkey_dec( &ctx, key, 128 + u * 64 );

            for( j = 0; j < 10000; j++ )
                aes_crypt_ecb( &ctx, v, buf, buf );

            if( memcmp( buf, aes_test_ecb_dec[u], 16 ) != 0 )
            {
                if( verbose != 0 )
                    polarssl_printf( "failed\n" );

                return( 1 );
            }
        }
        else
        {
            aes_setkey_enc( &ctx, key, 128 + u * 64 );

            for( j = 0; j < 10000; j++ )
                aes_crypt_ecb( &ctx, v, buf, buf );

            if( memcmp( buf, aes_test_ecb_enc[u], 16 ) != 0 )
            {
                if( verbose != 0 )
                    polarssl_printf( "failed\n" );

                return( 1 );
            }
        }

        if( verbose != 0 )
            polarssl_printf( "passed\n" );
    }

    if( verbose != 0 )
        polarssl_printf( "\n" );

#if defined(POLARSSL_CIPHER_MODE_CBC)
    /*
     * CBC mode
     */
    for( i = 0; i < 6; i++ )
    {
        u = i >> 1;
        v = i  & 1;

        if( verbose != 0 )
            polarssl_printf( "  AES-CBC-%3d (%s): ", 128 + u * 64,
                             ( v == AES_DECRYPT ) ? "dec" : "enc" );

        memset( iv , 0, 16 );
        memset( prv, 0, 16 );
        memset( buf, 0, 16 );

        if( v == AES_DECRYPT )
        {
            aes_setkey_dec( &ctx, key, 128 + u * 64 );

            for( j = 0; j < 10000; j++ )
                aes_crypt_cbc( &ctx, v, 16, iv, buf, buf );

            if( memcmp( buf, aes_test_cbc_dec[u], 16 ) != 0 )
            {
                if( verbose != 0 )
                    polarssl_printf( "failed\n" );

                return( 1 );
            }
        }
        else
        {
            aes_setkey_enc( &ctx, key, 128 + u * 64 );

            for( j = 0; j < 10000; j++ )
            {
                unsigned char tmp[16];

                aes_crypt_cbc( &ctx, v, 16, iv, buf, buf );

                memcpy( tmp, prv, 16 );
                memcpy( prv, buf, 16 );
                memcpy( buf, tmp, 16 );
            }

            if( memcmp( prv, aes_test_cbc_enc[u], 16 ) != 0 )
            {
                if( verbose != 0 )
                    polarssl_printf( "failed\n" );

                return( 1 );
            }
        }

        if( verbose != 0 )
            polarssl_printf( "passed\n" );
    }

    if( verbose != 0 )
        polarssl_printf( "\n" );
#endif /* POLARSSL_CIPHER_MODE_CBC */

#if defined(POLARSSL_CIPHER_MODE_CFB)
    /*
     * CFB128 mode
     */
    for( i = 0; i < 6; i++ )
    {
        u = i >> 1;
        v = i  & 1;

        if( verbose != 0 )
            polarssl_printf( "  AES-CFB128-%3d (%s): ", 128 + u * 64,
                             ( v == AES_DECRYPT ) ? "dec" : "enc" );

        memcpy( iv,  aes_test_cfb128_iv, 16 );
        memcpy( key, aes_test_cfb128_key[u], 16 + u * 8 );

        offset = 0;
        aes_setkey_enc( &ctx, key, 128 + u * 64 );

        if( v == AES_DECRYPT )
        {
            memcpy( buf, aes_test_cfb128_ct[u], 64 );
            aes_crypt_cfb128( &ctx, v, 64, &offset, iv, buf, buf );

            if( memcmp( buf, aes_test_cfb128_pt, 64 ) != 0 )
            {
                if( verbose != 0 )
                    polarssl_printf( "failed\n" );

                return( 1 );
            }
        }
        else
        {
            memcpy( buf, aes_test_cfb128_pt, 64 );
            aes_crypt_cfb128( &ctx, v, 64, &offset, iv, buf, buf );

            if( memcmp( buf, aes_test_cfb128_ct[u], 64 ) != 0 )
            {
                if( verbose != 0 )
                    polarssl_printf( "failed\n" );

                return( 1 );
            }
        }

        if( verbose != 0 )
            polarssl_printf( "passed\n" );
    }

    if( verbose != 0 )
        polarssl_printf( "\n" );
#endif /* POLARSSL_CIPHER_MODE_CFB */

#if defined(POLARSSL_CIPHER_MODE_CTR)
    /*
     * CTR mode
     */
    for( i = 0; i < 6; i++ )
    {
        u = i >> 1;
        v = i  & 1;

        if( verbose != 0 )
            polarssl_printf( "  AES-CTR-128 (%s): ",
                             ( v == AES_DECRYPT ) ? "dec" : "enc" );

        memcpy( nonce_counter, aes_test_ctr_nonce_counter[u], 16 );
        memcpy( key, aes_test_ctr_key[u], 16 );

        offset = 0;
        aes_setkey_enc( &ctx, key, 128 );

        if( v == AES_DECRYPT )
        {
            len = aes_test_ctr_len[u];
            memcpy( buf, aes_test_ctr_ct[u], len );

            aes_crypt_ctr( &ctx, len, &offset, nonce_counter, stream_block, buf, buf );

            if( memcmp( buf, aes_test_ctr_pt[u], len ) != 0 )
            {
                if( verbose != 0 )
                    polarssl_printf( "failed\n" );

                return( 1 );
            }
        }
        else
        {
            len = aes_test_ctr_len[u];
            memcpy( buf, aes_test_ctr_pt[u], len );

            aes_crypt_ctr( &ctx, len, &offset, nonce_counter, stream_block, buf, buf );

            if( memcmp( buf, aes_test_ctr_ct[u], len ) != 0 )
            {
                if( verbose != 0 )
                    polarssl_printf( "failed\n" );

                return( 1 );
            }
        }

        if( verbose != 0 )
            polarssl_printf( "passed\n" );
    }

    if( verbose != 0 )
        polarssl_printf( "\n" );
#endif /* POLARSSL_CIPHER_MODE_CTR */

    return( 0 );
}

#endif

#endif